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Abstract

Estimation periods in risk parameter computations

Johan Wickman, Rikard Tullberg

Today, there exist a broad range of different methods to handle financial risk. During
the last decade, Value at Risk has become a popular and widely used risk measure due
to its simplicity and convenient features. Value at Risk can be estimated by the use of
three different methods; Historical Simulation, Variance Covariance or Monte Carlo.

This paper is made on behalf of the risk management department at NASDAQ OMX.
Today, OMX uses two years of historical data to estimate VaR with the Historical
Simulation method and questioning if the parameter might be better off, if it instead is
based on a different estimation period. Our issue is thus: Is two year of historical data
the optimal estimating period for OMX to estimate VaR with Historical Simulation?

Our main contribution in this study is a comprehensive empirical investigation where
different estimation periods have been compared. This is done by a technique called
backtesting. Four different methods have been used to analyze conditional and
unconditional coverage, including Kupiec´s proportion of failures test, the Basel
committee´s traffic light test, Christoffersen´s interval forecast test and a test for
autocorrelation.

The results indicate that the best estimation period to calculate Value at Risk with the
method “Historical Simulation” is one year. Our conclusion also points out
shortcomings of the assumptions behind Value at Risk. The quality of data and the
strong assumption that price changes are independent and equally distributed is
seriously questioned.
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Populärvetenskaplig sammanfattning 
Idag finns det många metoder för att behandla finansiell risk. Under det senaste 
decenniet har riskmåttet Value at Risk (VaR) blivit alltmer förekommande tackvare sin 
enkla struktur och användarvänlighet. VaR kan beräknas med tre olika matematiska 
metoder; Historical Simulation, Variance Covariance method och Monte Carlo 
methond. 
 
Den här undersökningen är gjord för riskavdelningen på Nasdaq OMX. Idag använder 
de sig av två års historisk data för att beräkna VaR med Historical Simulation method, 
och har ifrågasatt ifall parametern skulle vara bättre estimerad med en annan 
tidslängd. Vår problemfrågeställning är därav: Är två års historisk data den optimala 
tidsperioden för OMX att estimera VaR med Historical Simulation? 
 
Huvuddelen av arbetet består av en omfattande kvantitativ studie där utfallet av olika 
estimeringsperioder har undersökts. Detta har genomförts genom så kallad back-
testing. Fyra olika metoder har använts för att analysera villkorlig och ovillkorlig 
täckning, med Kupiecs test, Basel test, Christoffersens test och test för 
autokorrelationen.  
 
Resultaten har indikerat att den bästa estimeringsperioden för estimering av VaR med 
Historical Simulation är ett års historia. Våra slutsatser pekar även mot bristerna i 
antagandena för VaR. Datakvaliteten och de starka antagandena om att 
prisförändringar är oberoende och jämnt fördelade över tiden är ifrågasatt.  
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1 Introduction 
This paper is made on behalf of the risk management department at NASDAQ OMX 
Derivatives Markets. The risk management department is responsible for managing 
NASDAQ OMX Derivatives Markets counterparty risk i.e. the risk that one or several 
market participants will default in their obligations to the clearing organization. To 
monitor counterparty risk, different risk parameters have been developed with 
objective to function as alarm signals if the value of a participants position changes 
drastically over a short period of time. Today, a widely used risk measure called Value 
at Risk is being used. This measure can be calculated in different ways, depending on 
the effort of the company, time and resources, and how much information that is 
available about your risky assets. NASDAQ OMX Derivatives Markets uses a 
framework that is built upon the method called Historical simulation which is 
estimated by the historical data of the underlying asset. From here the risk measure 
Value at Risk is going to be denoted as VaR and NASDAQ OMX Derivatives Markets 
as OMX. 
 
During the last five months we have studied the implications of this method and will 
in this study present a comprehensive empirical investigation of the method’s 
accuracy. 
 
This paper is divided in the following parts. First, we present the objective and put the 
problem in a context. Further we give an introduction to OMX as a clearinghouse and 
the risk management department. We then present the risk measure Value at Risk 
and the different kind of backtesting methods our empirical investigation is based on. 
Finally, results, analysis and conclusions are drawn from the empirical investigation 
and as a sum up a discussion of the investiagation and further studies are presented 
in the last section. 
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2 Problem formulation  
Today, OMX is using the Historical Simulation (HS) method to calculate its VaR 
parameter. Apart from its advantages and convenient features, it brings various 
weaknesses and drawbacks. The weaknesses of the method are mostly related to the 
data, as the parameter completely depends on the particular historical data sets used. 
The underlying assumption is that the past, as captured in the historical data set is 
sufficiently similar to the future to give a reliable idea of future risks.  Implicitly, it 
presumes that the risks we face in the future are similar to those we have faced in the 
past (Dowd, 1998). While this assumption is often reasonable, it can lead to seriously 
vague estimates of VaR.  
 
One of the major problems is that the data of the volatility of the data may fluctuate 
over time. It may be below average, which will result in a too low estimate of risk or it 
may be unusually high, in which case our estimates of VaR are likely to be too high. 
The data could also include unusual events that we would not expect to return in a 
foreseeable future, e.g. a major stock market crash. These examples will keep the VaR 
estimation too high as long as the data of the event still remains in the estimation 
period, e.g. two years as OMX is using today (see chapter 4 for fundamentals of VaR). 
By the same fundamental principal, the HS approach also has difficulty of dealing 
with permanent changes in risk factors. The estimation period will still be represented 
of old non up-to-date observations, until the old estimation period has been replaced 
by the data consisting of the new permanent changes. For example, if the estimation 
period is two years of historical data, and today some major important change 
appear which will affect the future, it will take us two years before the old data is out 
of our estimation period. Therefore the HS method is sensitive to single large 
changes and insensitive against macroeconomic changes, depending on how long 
estimation period we choose to use.  
 
There is also another problem when dealing with the length of estimation periods. As 
the HS method uses its empirical distribution to estimate VaR, the inference of the 
distribution will clearly be more accurate the longer run of data we include, especially 
when VaR is dealing with high confidence levels. If we base our VaR on a 95% 
confidence level we would have to wait on average 20 days (20*(1-0.95)=1, see 
chapter 4)) to expect a single loss in excess of VaR and 100 days with a 99% 
confidence level and so forth. The more extreme VaR we want to estimate i.e. high 
confidence level, the more observations are required. Assuming that the underlying 
distribution remains constant over the whole estimation period, we would 
presumably want the longest possible period to maximize the accuracy of our results. 
 
However, it is likely that at some point, the data will exhibit some systematic changes 
over time, and due to the first problem mentioned above, this might lead us to prefer 
a somewhat shorter estimation period. The question is; do we want a well estimated 
VaR, based on long runs of data and implicitly not consider new changes, or do we 
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want a VaR based on fewer data, but instead more accurate to new changes? This is 
the question OMX wants an answer too, and therefore is the topic of this study. 
 

2.1 Issue and objective 
Today, OMX are using two years of historical data to estimate VaR with the Historical 
Simulation method and questioning if the parameter might be better off if it instead 
would be based on a different length of historical data. Our issue is thus: Is two year 
of historical data the optimal estimating period for OMX to estimate VaR?  If not, 
which would be better? 
 
Hence, the objective is to distinguish an optimal length of historical data, which 
implies a comparison of different lengths of estimation periods and to evaluate the 
outcomes.  
 

2.2 Empirical Backtesting method 
To assess the optimal length of historical period for estimating VaR given the HS 
approach, we define the optimal period as one which would result in a VaR 
estimation that best covers for future movements in underlying asset changes.  
 
Optimal estimation period, definition 1: The optimal length of historical period 

would estimate a VaR that generates the number of exceedances closest to its given 

hypothesis  
 
The hypothesis regards to the theory of Value at Risk, which incorporates the length 
of estimation period and the confidence level of VaR estimation.  The term 
exceedances refer to the number of observations that would have exceeded the VaR 
parameter, i.e. the number of observations where the predetermined VaR parameter 
would have been to low estimated and hence would not take cover for future 
movements. This process is called backtesting. The process estimates a VaR 
parameter for a certain historical period and stress test the parameter over the next 
following period (during a quarter in this case). Thus, to perform a backtest the 
historical estimation period must not be closer than at least one quarter from today’s 
date.  
 
By this logic, you can perform the backtest during the same period, but for a range of 
different lengths of historical periods used for estimating the VaR parameter. In other 
words, you can estimate VaR parameters for different lengths of historical data, e.g. 
one, two or three years, and then backtest them throughout one certain period and 
compare the number of exceedances.   
 
By backtesting different VaR parameters (different lengths of estimation periods), all 
estimation periods have to end at the same date so the backtest begins in the same 
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point in time for each parameter, e.g. a quarter from now in the case of backtesting 
the last quarter.  
 
The backtest concerns only a period of one quarter. To make the study more 
accurate, the backtest is performed on a multiple number of periods. Thus, the 
backtesting procedure is going to begin further back in time, and then step forward 
one quarter at a time, until it reaches today’s date. For every quarter, the results from 
the backtest are summarized for each VaR parameter of all segments of stocks. The 
results are going to represent all segments’ number of parameter breaks for each 
quarter and for every VaR parameter.  

2.2.1Statistical backtesting methods 

VaR models are only useful if they predict risk reasonably well and should always be 
accompanied by validation. Backtesting is a formal statistical framework that consists 
of verifying that actual losses are in line with projected losses. When the model is 
perfectly calibrated, the number of observations falling outside VaR should be in line 
with the selected confidence level. The number of exceedences is also known as the 
number of exceptions. With too many exceptions the model underestimates risk, and 
with too few it lead to inefficient allocation of capital across units. (Jorion, 2001) 
 
Backtesting involves a systematically comparison between historical VaR measures 
with the subsequent returns. Since VaR models are reported only at specified 
confidence levels, the model is expected to be exceeded in some instances. A 
confidence level of 95 percent implies that five out of a hundred observations will 
exceed the VaR limit. In reality it is not uncommon that there are more or fewer 
exceptions. A greater or smaller percentage could occur because of bad luck. If the 
frequency of deviations becomes too large, the conclusions must be that the problem 
lies within the model and not bad luck. (Jorion, 2001) 
 
Tests that statistically examine whether the frequency of exceptions is in line with the 
selected confidence level are known as tests of unconditional coverage. These tests 
are straightforward to implement and do not take into account when in time the 
exceptions occur and make no assumptions about the return distribution. This 
approach is in other words fully nonparametric. A good VaR model should however 
not only produce the correct number of exceptions but also exceptions that are 
evenly spread in time i.e. independent and identically distributed. Tests that take this 
into account are known as tests of conditional coverage. (Jorion, 2001) 
 
 Thus, we need to add the conditional coverage to definition 1 and reformulate the 
optimal estimation period as: 
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Optimal estimation period, definition 2:  

The optimal length of an historical period would estimate a VaR that generates the 

number of exceedances that are closest to its given hypothesis and uniformly spread in 

time i.e. independent and identically distributed 

 
Therefore the statistical study consists of tests that both take into account 
unconditional and conditional coverage. Tests that have been made to study 
unconditional coverage include Kupiec´s proportion of failures test (Kupiec, 1995) and 
Basel Committees; traffic light approach (Basle Committee, 1996). Tests for 
conditional coverage consist of Christoffersen´s  interval forecast test (Jorion, 2001) 
and a test for autocorrelation (McNeil, Frey, Embrechts, 2005). These are the most 
common and well developed test methods in evaluating VaR models and hence good 
reason for us to use it in our investigation. 

2.2.2 Choice of lengths for estimation periods 

The suspicion of OMX is that a shorter estimation period than two years would 
generate more accurate results. Hence, we have chosen a half, one, two and three 
years of historical data as the different lengths of estimation periods for the VaR 
parameter. Thus, the study captures a range from longer to shorter periods than two 
years.  

2.2.3 Choice of backtesting periods 

When dealing with high confidence levels, it is as mentioned above, significant how 
much data there is available. With too low amount of data, the statistical test will not 
be valid. Another motive to use long history of data is to cover as many market 
situations as possible that have occurred in the past. Time periods with or without a 
financial crisis will result in very different outcome. Thus, our ambition is to choose a 
period not too far from today, but still a period that covers different types of market 
fluctuations. We have therefore chosen six years, starting quarter three, year 2003. 
This incorporates 24 quarters and is the length of each backtesting period. I.e. the 
VaR parameter is going to be backtested during the period from 2003 to 2009. 

2.2.4 Choice of stocks 

As mentioned in previous section we have chosen a six year backtesting period. The 
longest estimation period we are going to backtest is three years. Thus, it demands 
nine years of history for every stock to make it possible to backtest a three year 
estimation period during a six year period. Therefore we omit stocks with shorter than 
nine years of history.  
 
The stocks registered at OMX are divided into three segments; Large, Mid and Small 
Cap, due to its size of market capitalization. As a consequence, we do the study 
separately for each stock segment.  
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2.2.5 Backtesting Program in Visual Basic 

Our study is based on a constructed macro in Excel, programmed in Visual Basic. A 
list of stocks with nine years of history is the only input to the program. The outcome 
consists of the quarterly VaR parameter and its number of exceedances for every 
stock. The steps in the backtesting process are as follows: 

1. Load historical data for one stock 
2. Calculate the stocks daily returns, i.e. the daily change in percent 
3. Calculate the VaR parameter 
4. Backtest the parameter and record the number of exceptions over the present 

quarter 
5. Step one quarter ahead and repeat point 3 and 4 until today’s date has been 

reached 
6. Continue with the next stock in line and repeat the same procedure until the 

last number of stock is reached 
7. Change the length of estimation period, and backtest the rest of the VaR 

parameters, i.e. 0.5, 1,2 or 3 years 
8. Now all VaR parameters are backtested for one particular stock segment. 

Repeat 1-7 until all stock segments are backtested 
 
  



11 
 

3 NASDAQ OMX Derivatives Markets  
In 2008 the NASDAQ OMX Group was formed as a result of a merger between 
NASDAQ Stock Market Inc and OMX AB. Today, NASDAQ OMX Group is the world´s 
largest exchange company. It delivers trading, exchange, technology and public 
company services across six continents. (http://Nordic.nasdaqomxtrader.com) 
 
One of the principal functions of a clearing organization is to guarantee that all 
contracts traded will be fulfilled. At OMX, clearing is integrated with derivatives 
trading, whereby OMX becomes the counterparty in all transactions i.e. acts as a 
buyer to the seller and as a seller to the buyer. As a central counterparty, the main 
tasks of OMX are to; 
 

 Participate as counterparty in every transaction 
 Monitor the market and market participants 
 Handle all transactions 
 Calculate and administrate collateral 

 
All market participants with an agreement with OMX have a direct legal relationship 
with OMX. No end customers normally participate directly in trading but are 
represented by approved exchange and clearing members. OMX offers a broad range 
of products; forwards, futures and options on single Swedish, Norwegian, Finnish, 
Danish, Icelandic and Russian stocks as well as options and futures on the OMXS30 
index (the 30 most traded Swedish stocks). (http://Nordic.nasdaqomxtrader.com) 
 

3.1 Counterparty Risk Management 
NASDAQ OMX faces several kinds of risks every day; everything from traditional 
business risk to risk associated specific with the derivative clearing services it 
provides. The most noteworthy is the risk that one or several market participants will 
default on their obligations to the clearing organization, i.e. counterparty default. To 
handle this kind of risk, NASDAQ OMX relies on several vital factors such as quality 
and control of the overall clearing operations, the counterparty risk management 
framework, the collateral that is being pledged by participants and the established 
rules and regulations from authorities. (http://Nordic.nasdaqomxtrader.com) 
 
Counterparty risk is the risk that one participant in a transaction will not be able to 
fulfill its obligations in the future, due to the contract’s obligations. NASDAQ OMX 
Derivatives markets enter as counterparty for both the buyer and the seller of a 
binding derivative and therefore handle all the risk in a transaction, se fig 1.  
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Figure 3.1: OMX Derivatives Markets as a counterparty for both the buyer and the seller of a financial 

contract 

 

A participant has to pledge collateral to NASDAQ OMX when involved in a 
transaction. The collateral requirement is calculated based on the particular 
counterparty´s trading position and determined by risk models used to calculate an 
individual counterparty´s daily margin requirements, which in case of a default would 
be the resources to liquidate the underlying portfolio. 
(http://Nordic.nasdaqomxtrader.com) 
 
The margins are required to avoid the risk of a loss for the clearing organization if a 
participant defaults. The margin requirements should not be too low, as this would 
exceed the risk of a loss, but neither too high, as this could disrupt trading and 
clearing.  
 
If the counterparty defaults, the time to close an account varies depending on the 
type of the account. Under normal circumstances it takes time to neutralize an 
account and during this time the value of the account can change. It is conservatively 
assumed that it takes two days on average to close a counterparty´s position. The 
margin parameters are for this reason calculated with a two day lead time. 
(http://Nordic.nasdaqomxtrader.com) 
 

3.2 Risk management department  
The risk management department is primarily responsible for managing NASDAQ 
OMX Derivate Markets counterparty risk. This is done by a framework of policies, 
standards, procedures and resources. The department manages changes in 
counterparty risk exposures against a range of risk limits on a daily and intraday 
basis. This work involves handling parameter breaks, intraday risk reporting and 
monitoring, intraday margin calls and blocking of trades and offsetting trades. Every 
day the risk management department is made aware of any risk parameter breaks 
(situations where the change in day-to-day market prices has exceeded the approved 
risk interval parameter level for any underlying security). When this happens the 
counterparty accounts are reviewed in detail and the cause of the price movement is 
also reviewed. A decision is then taken by the risk management department. A risk 
parameter break is from a statistical point of view expected. This means that a risk 
parameter break doesn´t have to signify a need to change the parameter. A more 
detailed investigation has to be done. If the desired collateral that is being pledged 
by a customer is not satisfied, OMX Derivatives Markets has the authority to make 
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intraday margin calls. This is done until the desired level of collateral is reached. 
(http://Nordic.nasdaqomxtrader.com) 
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4 Value at risk 
How much you can lose at most on this investment is a question all investors at some 
time ask themselves before an investment or during a possession in some asset. Every 
consideration of an investment incorporates a financial risk which therefore creates 
an interest among the investor as to what value that is on stake.  
 
What determines the financial risk can briefly be explained by both human-created as 
well as natural elements. As for the first mentioned, we humans have given rise to 
and have impact on phenomenon such as business cycles, inflation, changes in 
government policies, wars etc., and secondly natural phenomenon can arise both 
predictable and unpredictable such as hurricanes and earth quakes. No less 
important, the financial risk also comprises today’s evolution, such as long-term 
economic growth and technological innovations. All these factors have an impact on 
financial risk and as a result it has caused escalating volatility the last decades for 
exchange rates, interest rates and commodity prices. These three risk variables go by 
the common name market risk, which is one of several risks that are linked to 
financial risk, such as credit risk, liquidity risk, legal risk and operational risk. (Penza, 
Bansal 2001)  
 
As a result of technology innovations and new economic theories, emergence of new 
risk management methods have been developed. Corporations today such as banks, 
brokerage firms and investment funds use similar methods to compute financial risk. 
These together have with statistical-based risk-management systems evolved a risk 
measurement called Value at Risk (VaR). (Penza, Bansal 2001) 
 
The underlying mathematics in VaR can originally be deduced from prior portfolio 
theory by Harry Markowits. The evolution of the risk measure has its most important 
turning points after earlier financial crises because of the aftermath of the events. The 
consequence was more pressure on the banks, which induced an increase in 
regulatory capital requirements. In return, it followed by a demand from the banks 
themselves to elaborate risk measures and control devices to ensure that they met 
these capital requirements. After the mid 80s, VaR began to occur in corporations risk 
departments, but it was not before ten years after that VaR became a standard risk 
measurement as a consequence of the investment bank J.P Morgan officially 
introduced it, and in the same time it was published in the G301 report 1993. (Jorion, 
2001) 

                                              
1 Group of thirty, also known as G30, is a consultive group composed of academics and financiers whose goal is 
to facilitate understanding of financial and economic issues in the private and public sector. (Investopedia.com, 
3-12-09) 
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4.1 Fundamentals of VaR 
VaR is a statistical concept that represents an estimation of the maximal loss an 
institution could ever lose on a portfolio of assets. (Penza, Bansal 2001)  
 
Jorion defines VaR by: 
 
Definition 1.1 VaR summarizes the worst loss over a target horizon that will not be 

exceeded with a given level of confidence. (Jorion, 2001) 

 
This implies that losses bigger than VaR only occur with a certain small probability (1 
– conf. level). (jorion, 2001) 
 

 

Figure 4.1: An illustration of VaR with confidence level 95% on the NASDAQ 100 index.  The samples to the 

left are negative and are the losses. The red marked stacks is the 5% worst samples, i.e. exceeds of VaR which 

in this example is -3% (Investopedia.com, 2009) 

 

VaR is a flexible instrument as it only consists of two parameters that are adjustable; 
the time horizon and the probability level. The choice of the time horizon is mainly 
subjective and related to the business of the financial institution and the kind of 
portfolio. For a bank trading portfolio invested in high liquid currencies, the choice of 
a one day time horizon is probably the best one, compared to a portfolio with 
quarterly rebalancing and reporting. Ideally, the time horizon corresponds to the 
longest period needed for orderly portfolio liquidation. (Penza, Bansal 2001) 
 
The dependence of probability level has no guidance from the finance theory. 
Instead, it is a matter of risk aversion from the manager’s perspective. The probability 
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level determines the number of excepted future exceptions of VaR, for example 5%, 
over the specified time horizon. In other words it is up to the manager to decide if a 
loss occurring with probability equal to 5% or 1% should be treated as extreme 
(Jorion, 2001).  
 

The formal definition of VaR can then be formulated as: 
 
Definition 1.2 Given a probability of Ƚ percent and a holding period of t daysǡ an entityǯs 
VaR is the loss that is expected to be exceeded with a probability of only 1- Ƚ percent on 

the t-day holding period (Penza, Bansal 2001).  

 
When working with market risk, the time horizon is often set to one or ten day 
holdings, while for credit risk it is more frequent with one day. Common confidence 
levels are 95%, 99% and 99.9% depending on the application (OMX has chosen 
99.2%). The Bank of International Settlements proposes for market risk to compute 
ten-day VaR with confidence level ɲ = 99% (Hult, 2007).  
 
The mathematical definition of VaR is defined as: 

 

Definition 1.3 Given a loss L and a confidence level Ƚ א (0,1), VaRȽ(L) is 

given by the smallest number l such that the probability that the loss L exceeds l is no larger than ͳ Ϋ Ƚ, i.e. 

 

VaRȽ(L) = infሼl א Թ ׷ PሺL > lሻ ൑ 1 െ Ƚሽ 
= infሼl א Թ ׷ 1 െ  FL(l) ൑ 1 െ Ƚሽ 
= infሼl א Թ ׷  FL(l) ൒ Ƚሽ 

 
Here Թ denotes the set of real numbers, FL the loss distribution. We might think of L 
as a loss resulting from holding a portfolio over some fixed time horizon. (Hult, 2007) 
 

4.2 Historical simulation of VaR 
There are three main methods to estimate VaR; Historical simulation, the Variance-
Covariance method and the Monte-Carlo method. The method OMX today uses is 
the Historical simulation (HS). This method makes very few assumptions about the 
market price processes generating the portfolio’s returns. It simply assumes that 
market price innovations in the future are drawn from the same empirical distribution 
as those market price innovations generated historically. I.e. it uses historical samples 
to construct a cumulative distribution function for future price changes. By using the 
empirical distribution, many of the problems inherent in modeling the evolution of 
market prices can be avoided. The market prices tend to have fatter tails and be 
slightly more skewed than predicted by the normal distribution. By applying the 
historical simulation, we suppose that we have observations x1,ǥ , xn  of independent 
and identically-distributed (iid) random variables X1,ǥ , Xn  with distribution F.  Xi is 
the percentage price change of an asset Y during the time horizon t, i.e.  . Xi =
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Yi YiെtΤ െ 1 . As OMX takes cover for both upward and downward price changes due 
to certain derivatives, they use the absolute value of the price changes and hence 
does not distinguish between negative or positive returns.  The empirical distribution 
function is then given by 
 

Fnሺxሻ =
1

n
෍ॴሾXk ,λሻ(x)

n

k=1

. 

 
Here ॴA  is the indicator function: ॴAሺxሻ = 1 if x א A and 0 otherwise. The empirical VaR 
is then given by  

VaRȽ(F) = infሼx א Թ ׷  Fnሺxሻ ൒ Ƚሽ 
 
If we order the sample X1,ǥ , Xn  such that X1,n ൒ ڮ ൒ Xn,n (if F is continuous, then 

Xj ് Xk a.s. for j ് k), then the empirical quantile is given by 

 
VaRȽ(F) = Xሾnሺ1െȽሻሿ,n    Ƚ א (0,1) 

 
where Xሾyሿ,n  is an interpolation of Xy,n , since y is not a discrete number, which is 

required.  
 
The interpolation is solved as follows: 
 

R1 = [n(1 െ Ƚ)] 
R2 = R1 + 1 

dx = R2 െ ሺn െ 1ሻ(1 െ Ƚ) 
 
where [w] is the integer part of w, ሾwሿ = supሼn א Գ: n ൑ wሽ (the largest integer less or 
equal to w). Further, 

V1 = XR1 ,n ,  V2 = XR2 ,n  

 
which represents the R1:th and the R2:th largest values of the n number of 
observations. Finally, the VaR is estimated as 
 

VaRȽ(F) = Xሾnሺ1െȽሻሿ,n = V1dx + V2(1 െ dx) 

 
For example, if we have 250 observations with confidence level 95% we get: 
R1 = ሾ250ሺ1 െ 0.95ሻሿ = ሾ12.5ሿ = 12   
R2 = 12 + 1 = 13 , 
dx = 13 െ 249ሺ1 െ 0.95ሻ = 13 െ 12.45 = 0.55.  

 
This means that V1 is the 12th largest value of the 250 observations, X12,250  , as V2 the 

13th, X13,250 . Then VaR is calculated as: VaR0.95ሺFሻ =  X12,250 × 0.55 +  X13,250 × (1 െ
0.55)  
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5 Statistical Backtesting methods 
As what have been mentioned, an accurate VaR model needs to qualify in both 
conditional and unconditional coverage. The presentation of this section is hence 
divided into two sections, named after the above criteria. 
 

5.1 Tests of unconditional coverage 
In a good VaR model the number of exceptions should be in line with the selected 
confidence level. As discussed earlier this is not always the fact in reality. Too many 
deviations from the model should however be an alarm signal that the model is badly 
calibrated or even wrong.  
 
One of the simplest methods to verify the accuracy of a VaR model is to record the 
failure rate, which gives the proportion of times VaR is exceeded in a given sample. 

Ideally, the failure rate 
ݔܶ
 where x is the number of exceptions and T is the number of 

days, should give an unbiased measure of the confidence level p i.e converge to p as 
the sample size increases. At a given confidence level, we want to know if x is too 
small or too large under the null hypothesis that: 
݌:0ܪ  = Ƹ݌ = ݔܶ

 

 
If the observed failure rate ݌Ƹ differs significantly from the failure rate suggested by 
the confidence level ݌, the null hypothesis is rejected. (Jorion, 2001). 
 
The setup for the test is a Bernoulli trial, which is a classical framework of success and 
failures.  Under the null hypothesis that the model is correctly calibrated, the number 
of exceptions x follows a binomial probability distribution:  
 

Prܺۦ = ,ȁܶݔ ۧ݌ = ൬ܶ݌൰ כ ݔ݌ כ (1 െ ݔെܶ(݌  

 
When T is large, we can use the central limit theorem and approximate the binomial 
distribution by the normal distribution: ݖ =

ݔ െ ݌ כ ܶඥ1)݌ െ (݌ כ ܶ 

 
This binomial distribution can be used to test whether the number of exceptions is 
acceptably small. (Jorion, 2001) 
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When designing a verification test for unconditional coverage, there is a tradeoff 
between two kinds of errors: 
 

 Type 1 error- rejection of a correct model 
 Type 2 error- not rejecting an incorrect model 

 
      Model   

  

   

  

Decision   Correct   Incorrect 

Accept 

 

Ok 

 

Type 2 error 

Reject   Type 1 error   Ok 

Table 5.1: A summary of the two states, correct versus incorrect model and the decision. 

 
When backtesting VaR models, the users have to balance type 1 errors against type 2 
errors.  (Jorion, 2001) 

5.1.1 Kupiec´s POF test 

Kupiec´s proportion of failures test attempts to determine whether the observed 
frequency of exceptions is consistent with the frequency of expected exceptions 
according to the VaR model and chosen confidence level. It also tries to balance 
between the two types of errors discussed in section 5.1. The test uses the binomial 
distribution to calculate the probability that a certain number of VaR breaks will occur 
given a selected confidence level and sample size. Under the null hypothesis that the 
model is “correct”, the number of exceptions follows the binomial distribution. 
 

Prܺۦ = ,ȁܶݔ ۧ݌ = ൬ܶ݌൰ כ ݔ݌ כ (1 െ ݔെܶ(݌  

 
where ݔ is the number of VaR breaks, ݌ is the selected confidence level and T the 
sample size. 
 
By using the cumulative binomial distribution, an interval can be calculated within 
which the number of VaR breaks must fall for the test to accept the VaR model. 
Kupiec defines these regions by the tail points of the log- likelihood ratio; 
ܨܱܴܲܮ  = െ2ln༌ቌ (1 െ ݔെܶ(݌ כ ቂ1ݔ݌ െ ቀܶݔቁቃܶെݔ כ ቀܶݔቁݔቍ 

 
This quantify is asymptotically (when T is large) chi square distributed with one 
degree of freedom under the null hypothesis that p is the true probability. The cutoff 
value for rejection of the test is given by the chi square distribution (appendix 1). If ܨܱܴܲܮ  exceeds the cut off value, the model is rejected, though the number of 
exceptions is outside the interval. A rejection implies that the confidence level that 
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has been used when calculating VaR did not match the actual probability of VaR 
breaks.(Jorion, 2001) 

5.1.2 Basel committee´s traffic light test 

The Basel committee of banking supervision has as its objective to enhance and 
improve the quality of banking supervision worldwide. The committee’s members 
come from all around the world and their work is best known for its international 
standards on capital adequacy. A broad framework of rules has been outlined 
regarding back tests of different risk models. The verification procedure consists of 
recording daily exceptions of the 99 percent VaR over the last year i.e. 250 trading 
days. The size of risk capital requirement depends of the outcome of the model 
backtest. If the risk becomes larger so will the capital requirement.(Basle Committee, 
1996) 
 
The test is directly derived from the failure rate test and tries to balance between the 
two types of errors discussed in section 5.1. The test begins with counting the 
number of exceptions that occurred over the selected number of days. The expected 
number of exceptions is given by T*(1-p), where T is the number of days and p the 
selected confidence level.(Jorion, 2001) 
 
The committee has decided that over 250 trading days with 99 % VaR, up to four 
exceptions are acceptable. These four exceptions belong to the first of three 
categories and is defined as the “green zone”. If the number of exceptions is in the 
interval from 5-9, they fall into the second category, the yellow zone. More than nine 
exceptions and they fall into the third category, the red zone. The green zone is 
defined as an accurate level of exceptions and the probability of accepting an 
inaccurate model is low. More exceptions are connected with a higher probability 
that the exceptions were produced by an inaccurate model. If the number of 
exceptions ends up in the yellow zone, these exceptions could be produced by both 
an accurate but also an inaccurate model with a higher probability than the outcomes 
in the green zone. The red zone generally indicates a clear problem with the model. 
There is only a small probability that an accurate model would generate ten or more 
exceptions from a sample of 250 observations. In other words, the red zone should 
lead to an automatic rejection of the model. (Jorion, 2001) 

  
As illustrated in table 5.1.2 more exceptions than 4 result in a higher capital 
requirement. 
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Zone Number of exceptions Increase in scaling factor Cumulative probability 

  0 0 8,11 

  1 0 28,58 

  2 0 54,32 

Green 3 0 75,81 

  4 0 89,22 

  5 0,4 95,88 

  6 0,5 98,63 

Yellow 7 0,65 99,6 

  8 0,75 99,89 

  9 0,85 99,97 

Red 10 and more 1 99,9 

 

Table 5.1.2: Illustrates the boundaries for the Basel test over 250 days. If the number of exceptions is five or 

more, the financial institution incurs a progressive penalty (the scaling factor increases). The cumulative 

probability is the probability of obtaining a given number or fewer exceptions when the model is correct (true 

99 % coverage). The yellow zone begins at the point where the cumulative probability exceeds 95 % and the 

red zone where the cumulative probability exceeds 99.99%. 

 
5.2 Tests of conditional coverage 
A good VaR model should not only produce the “correct” number of exceptions but 
also produce exceptions that are evenly spread in time i.e. independent. Clustering of 
exceptions is an indicator that the model is inaccurate. The market could experience 
increased volatility that is not captured by VaR. The investigation of a good VaR 
model should therefore consist of tests for conditional and unconditional coverage.  

5.2.1 Autocorrelation 

This measure is part of our investigation of conditional coverage. Clustering of 
exceptions is a signal that the model does not capture the volatility in the market 
(Jorion, 2001). The autocorrelation is represented as a number betweenሾെ1,1ሿ, where 
1 defines perfect correlation and -1 perfect negative correlation. In other words, this 
is an indicator how two time periods correlates to each other.    
 
Autocorrelation is defined as; 
 ܴሺ߬ሻ =

ሾሺܧ ݐܺ െ )ሻߤ ߬+ݐܺ െ 2ߪሿ(ߤ
 

 
Where “ܧ” is the expected value operator, ܺݐ is a time series with mean ߤ and 
variance ݐܺ ,2ߪ+߬ is the same time series  with a lead time of ߬ with the same mean 
and standard deviation. (McNeil, Frey, Embrechts, 2005).  

5.2.2 Christoffersen´s interval forecast test 

Christoffersen´s interval forecast test examines whether the probability of an 
exception today depends on the outcome the previous day. The same log-likelihood 
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framework as Kuipec POF test is used but extended to include a statistic for 
independence of exceptions. (Jorion, 2001) 
 
The test takes its beginning by first defining an indicator variable. If VaR is exceeded 
any day during the specific time period, the indicator gets a value of 1. If there´s no 
exception it gets the value 0. ݐܫ = ൜1       ݂݅ ݏݎݑܿܿ݋ ݊݋݅ݐ݈ܽ݋݅ݒ

  ݏݎݑܿܿ݋ ݊݋݅ݐ݈ܽ݋݅ݒ ݋݊ ݂݅ 0
 
The next step is to define ݆݊݅ as the number of days in which state j occurred in one 

day while it was as i the previous day and ݅ߨas the probability of observing an 
exception conditional on state i the previous day. If an exception is independent of 
what happened the previous day 0ߨand 1ߨ should be equal. (Jorion, 2001) 
0ߨ  =

݊01݊00 + ݊01

1ߨ                      =
݊11݊10 + ݊11

ߨ                 =
݊01 + ݊11݊00 + ݊01 + ݊10 + ݊11

 

 
The test statistic for independence of exceptions has the form 
ܴ݀݊݅ܮ  = െ2ln༌ቆ (1 െ 00݊(ߨ +݊10 כ 01݊ߨ +݊11

(1 െ 00݊(0ߨ כ 0ߨ
݊01 כ (1 െ 10݊(1ߨ כ 1ߨ

݊11
ቇ 

 
This framework allows an investigation whether the reason for not passing the test 
depends on clustering of exceptions, by calculating the statistic ܴ݀݊݅ܮ  and compare 
the value against the chi square distribution with one degree of freedom (see 
appendix 1) as the cutoff value. The value has to be lower than the critical value of 
the chi square distribution to pass the test. (Jorion, 2001) 
 
For example, if you of 252 days have 20 exceptions this is equivalent with 7.9 = ߨ 
percent. Of these, 6 exceptions occurred following an exception the previous day and 
14 exceptions occurred when there was none the previous day. The conditional 
probabilities are; 
 

  % 6=14/232 = 0ߨ 
 % 30 = 6/20 = 1ߨ 

 
This indicates that we have a much higher probability of having an exception 
following another one. We find ܴ݀݊݅ܮ = 9.53. This is a higher value than the cutoff 
value of 3.84 at the confidence level 95% (see appendix 1) and therefore we reject 
independence. 
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6 Empirical results 
In our study, we observe stocks over a period of six years. During this time, the 
volatility of the stocks fluctuates between the start and end point of the investigation 
period. Obviously, there had been at least one major financial crisis during this time. 
However, that will neither be taken into account nor be noticeable in the concluding 
analysis, as we look at the result as one final outcome, not what has occurred one 
quarter to another. As an orientation we therefore show the histogram for the 
average parameter breaks 99.2% VaR, with a two year estimation period for each of 
the three segments of stocks. 
 
 

 
 

 Figure 6.1: Histogram of the average parameter breaks 99.2% VaR for the three stock segments; Small Cap, 

Mid Cap and Large Cap and the theoretical expected number of exceedance points given the 99.2% 

confidence level for a two year estimation period. 

 
As table 6.1 illustrates, there is two major increases in parameter breaks around 
quarter one 2006 and quarter three 2008 and some larger fluctuations during the 
whole year of 2007. The years with no parameter breaks, the parameter seems to be 
too high. We also notice that Large Cap generally has a higher level of fluctuations 
than the other segments.  

 
6.1 Data quality 
As mentioned in chapter 2, the underlying assumption for the HS method is that the 
past, as captured in the historical data set, is sufficiently like the future. As a measure 
of data validity to presume future outcomes, we regard the distribution of the 
historical trade frequency of each segment of stocks. The amount of absent trading 
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days is thus of great importance. With a great lack of trading days, the final 
conclusions would be vague. Thus, the greater frequency of trades the more accurate 
assumptions we presume. 
 
Data quality 

Small Cap Mid Cap Large Cap 

8,58% 9,03% 5,25% 

   
 

Table 6.1:  The amounts of days in each stock segments that has a price change equal to zero, i.e. the amount 

of days that the stock wasnǯt traded 

 
The result shows that Large Cap has significantly lower amount of absent trading 
days. Small Cap and Mid Cap has similar results. 
 

6.2 Parameter breaks  
In this section the results from the empirical backtest are presented. Each of the 
segments is illustrated separately. Results from all estimation periods are captured in 
the same table, including total amount of parameter breaks, average and theoretical 
number of parameter breaks and the correlation factor.  
 
The total amount of exceedance points is a sum of all exceedances during a six year 
period. We generalize the number of trading days to 62 per quarter, i.e.248 per year. 
Hence the total number of exceedance points is a summation over 1488 days, for all 
stocks in each segment. The average number of exceedance points is the total 
number of exceedance points divided by the current number of stocks. It represents 
the average number of exceedance points of the current estimation period, for one 
stock in that segment. The theoretical number of exceedance points is the expected 
number of exceedances given a six year period with VaR at confidence level 99.2%. 
 
The correlation indicates how well the parameter is correlated between each quarter. 
Zero indicates no correlation. 
 
Small Cap 

Parameter 0,5 1 2 3 

Total 978 837 793 745 

Average 21,26 18,20 17,24 16,20 

Theoretical 11,90 11,90 11,90 11,90 

Correlation -7% 0% 12% 15% 

     
 

Table 6.2: Empirical results for the segment Small Cap for all four estimation periods; 0.5, 1, 2 and 3 years 

during a six year period of backtest  

 
The Small Cap study engages 46 stocks. As illustrated in table 6.2, the three year 
parameter shows the lowest average of exceedance points. Though, all the four 
estimation periods exced the theoretical expected number of parameter breaks. 
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Besides, the three year parameter is the one with the highest dependency from 
historical data, i.e. has greatest correlation. In contrast, the one year parameter has no 
dependency and the six months parameter is negative correlated. 
 
Mid Cap 

Parameter 0,5 1 2 3 

Total 655 627 681 664 

Average 19,85 19,00 20,64 20,12 

Theoretical 11,90 11,90 11,90 11,90 

Correlation -18% 1% 5% 6% 

     
 

Table 6.3: Empirical results for the segment Mid Cap, for all four estimation periods; 0.5, 1, 2 and 3 years 

during a six year period of backtest 

 
The Mid Cap study engages 33 stocks. As what can be distinguished from table 6.3, 
the one year parameter has both the lowest amounts of parameter breaks and 
correlation. Unlike the result from Small Cap, the two year parameter has the largest 
amount of parameter breaks. The six months parameter shows a strong negative 
correlation.  
 
Large Cap 

Parameter 0,5 1 2 3 

Total 1620 1569 1853 1989 

Average 22,50 21,79 25,74 27,63 

Theoretical 11,90 11,90 11,90 11,90 

Correlation -2% 6% 11% 15% 

     
 

Table 6.4: Empirical results for the segment Large Cap, for all four estimation periods; 0.5, 1, 2 and 3 years 

during a six year period of backtest 

 
The Large Cap study incorporates 72 stocks. The one year parameter shows the 
closest average of parameter breaks to the theoretical number. Both the two and the 
three year parameter have a relative higher average number of exceedances and 
correlation factor, in comparison with the other two parameters.  

 
6.3 Kupiec´s POF test 
As discussed earlier, Kupiec’s test is conducted as a log likelihood- ratio test. Under 
the null hypothesis that the model is correct, LRPOF has a chi-square distribution with 
one degree of freedom. The test is performed with 95% confidence level and the 
corresponding cut off value is 3.84 (see appendix 1).  If the observed failure rate ݌Ƹ 
differs significantly from the failure rate suggested by the confidence level ݌, the null 
hypothesis is rejected and the model is considered inaccurate. 
 
The results from the three segments are separately represented in tables 6.5, 6.6, and 
6.7. The tables contain the number of stocks in the segment that pass the test. An 
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average value for the whole segment of the POF ratio is also computed, which is 
presented against the theoretical cut-off value from the Chi-square distribution.  
 

Small Cap  

Parameter 0,5 1 2 3 

#Pass the test 24 32 33 30 

LR-POF 8,15 4,94 4,30 4,59 

Cut Off value 3,84 3,84 3,84 3,84 

     
 

Table 6.5: The results of Kupiecǯs test for each estimation period/parameter, for the Small Cap segment 

 
For Small Cap, the two year parameter shows best results in comparison to the other 
parameters, in terms of number of stocks that pass the test and average closest POF 
ratio. The one year parameter shows second best results.  
 
Mid Cap  

Parameter 0,5 1 2 3 

#Pass the test 22 18 17 19 

LR-POF 6,80 5,59 8,21 8,33 

Cut Off value 3,84 3,84 3,84 3,84 

     
 

Table 6.6: The results of Kupiecǯs test for each estimation period/parameter, for the Mid Cap segment 

 

The six month parameter shows best results for Mid Cap in terms of number of stocks 
that pass the test. Nevertheless, the one year parameter has the lowest POF ratio on 
average, and hence closest to the theoretical value.  
 
Large Cap  

Parameter 0,5 1 2 3 

#Pass the test 26 28 16 17 

LR-POF 9,45 8,49 15,24 19,03 

Cut Off value 3,84 3,84 3,84 3,84 

     
 

Table 6.7: The results of Kupiecǯs test for each estimation period/parameter, for the Large Cap segment 

 
For Large Cap, the one year parameter shows best results for both number of stocks 
that pass the test and closest average POF ratio to the theoretical value. Not far 
behind comes the six month parameter. The two and three year parameters show 
significantly worse results. 
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6.4 Basel test 
The traffic light approach is built upon the same theoretical framework as Kuipec’s 
POF- test. The binomial distribution is used to estimate if the number of exceptions is 
in line with the theoretical number. To pass the test, the total number of exceptions 
for every stock have to fall into the first of three categories, the ”green”. Table 6.8 
shows the limits of exceptions for every stock at 99.2 % confidence level, and tables 
6.9, 6.10 and 6.11 show the results for Small, Mid and Large Cap for the different 
estimation periods. 
 
Limits for Basel test 

#Exceptions Outcome 

<19 Green 

19-25 Yellow 

>25 Red 

  
 

Table 6.8: Limits of parameter breaks for the three different categories in the Basel test 

 
Small Cap 

Parameter 0,5 1 2 3 

Green 24 32 33 32 

Yellow 9 8 7 8 

Red 13 6 6 6 

     
 

Table 6.9: The results of the Basel test for all estimation periods of the stock segment Small Cap 

 
For Small Cap, the one, two and three year parameters show similar results, with 
around a quarter of the stocks equally distributed over the yellow and red category. 
The six month parameter stands out, with a significantly higher amount of stocks in 
the red category. 
 
Mid Cap 

Parameter 0,5 1 2 3 

Green 22 18 17 19 

Yellow 5 10 5 5 

Red 6 5 11 9 

     
 

Table 6.10: The results of the Basel test for all estimation periods of the stock segment Mid Cap 

 

The results from Mid Cap are well dispersed, with the six month parameter of 
significantly highest amount of stocks in the green category.  
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Large Cap 

Parameter 0,5 1 2 3 

Green 26 28 16 17 

Yellow 21 27 18 13 

Red 25 17 38 42 

     
 

Table 6.11: The results of the Basel test for all estimation periods of the stock segment Large Cap 

 
For Large Cap, the one year parameter shows both the highest number of stocks in 
the green category and the lowest number of stocks in the red category. 
 

6.5 Christoffersen´s interval forecast test 
The objective of the interval forecast test is to test conditional coverage i.e. the 
probability that an exception today depends on the outcome the day before. The 
same log-likelihood framework as Kuipecs POF test is used, but extended to include a 
statistic for independence of exceptions (see chapter 5.2.2). The following three tables 
6.12, 6.13, 6.14 illustrate the results for Small, Mid and Large Cap. The tables contain 
the number of stocks in the segment that pass the test. An average value for the 
whole segment of the IND ratio is also computed which is presented against the 
theoretical cut-off value from the Chi-square distribution. 
 
Small Cap 

Parameter 0,5 1 2 3 

#Pass the test 28 30 31 29 

LR-IND 6,61 6,21 5,65 6,61 

Cut Off value 3,84 3,84 3,84 3,84 

     
 

Table 6.12: The results of Christophersenǯs test for each estimation period for the Small Cap segment 

 

For Small Cap, the two year parameter shows both the highest amount of stocks that 
pass the test as well as closest IND ratio to the theoretical value.  
 
Mid Cap 

Parameter 0,5 1 2 3 

#Pass the test 26 15 15 17 

LR-IND 4,33 6,19 7,72 8,37 

Cut Off value 3,84 3,84 3,84 3,84 

     
 

Table 6.13: The results of Christophersenǯs test for each estimation period for the Mid Cap segment 

 
The six month parameter shows a significantly higher amount of stocks that pass the 
test compared to the other three parameters. Consequently, the average IND ratio is 
also relatively much lower than the others. The three year parameter has the second 
highest amount of stocks that pass the test, but contradictory the relative highest IND 
ratio. 
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Large Cap 

Parameter 0,5 1 2 3 

#Pass the test 42 36 30 28 

LR-IND 5,5 5,83 8,29 9,66 

Cut Off value 3,84 3,84 3,84 3,84 

     
 

Table 6.14: The results of Christophersenǯs test for each estimation period for the Large Cap segment 

 

For Large Cap, the six month parameter continues to show significantly highest 
amount of stocks that pass the test. Similarly, the parameter also has the average IND 
ratio closest to the theoretical value. The one year parameter has a clear second place 
in terms of stocks that pass the test and average IND ratio to the theoretical value.   
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7 Consolidated analysis 
Due to the different segments and its different features, we summarize the results of 
each segment separately and conclude which estimation period that best makes the 
different tests, given the theory and our objective. 
 
Given the results from chapter 6, the outcome for Small, Mid and Large Cap is 
presented in Table 7.1, 7.2 , 7.3, graded from 1-4 depending on how well the 
parameters have passed the test relatively to each other.  
 
For breaks, number one represents the estimation period which resulted in the 
average number of exceedance points closest to the theoretical value and number 
four the furthest away.  
 
For correlation, number one represents the estimation period which had a correlation 
closest to zero and number four the estimation period furthest from zero.  
 
For the statistical tests, some considerations have been made due to both the total 
number of test passed for the current parameter and its average statistical test result, 
as for LRPOF and LRind, for the tests proven similar results. For the Basel test, final 
considerations have been made upon a balance of all categories incorporated to the 
test i.e. green, yellow and red category. 
 
For the final conclusion, all test results have the same weight and meaning in our 
analysis. Thus, we sum up the total score of each estimation period to distinguish 
them and conclude which one that has proven best results in total. 
 

7.1 Small cap 
The three year estimation period performed 745 parameter breaks out of 1488 days 
and the average number of 16.2 parameter breaks, compared to the two year 
parameter with 17.2, is the closest to the theoretical expected number of exceedance 
points of 11.9. The one year estimation period resulted in zero correlation and 
therefore labeled with a number one.  
 
From table 6.5, the results from Kupiec’s test show that the two year estimation 
period has both the highest amounts of stocks that pass the test (33 against 32), and 
on average closest LRind result to the theoretical value (4.30 against 3.84). The 
outcome from the Basel test, for the one, two and three year parameter is hard to 
distinguish. Clearly the six month parameter has the worst results, with the highest 
amounts of stocks that ended up in the red and yellow category (see table 6.9). For 
Christophersen’s test, the two year parameter shows best results. The six month and 
the three year parameter show similar results. Thus, we call it a tie.  
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Small Cap 

Parameter 0,5 1 2 3 

Breaks 4 3 2 1 

Correlation 2 1 3 4 

Kupiec 4 2 1 3 

Basel 4 1 1 1 

Christophersen 3 2 1 3 

Conclusion 4 2 1 3 

     
 

Table 7.1: Overall results for Small Cap, labeled in a scale from 1-4, where one represents the estimation 

period resulting relatively best in the group  

 
Given the results for Small Cap in table 7.1, the overall outcome is hard to distinguish, 
due to the uncertainty of the mixed results and close fallout between the one and the 
two year parameter. Correlation for the one year parameter is relatively much better 
than for the two year parameter and for the Basel test there is a tie. What determine 
our conclusion are the results from Kupiec’s and Christophersen’s tests, which show 
that the two year parameter generally provides best results. 
 

7.2 Mid Cap  
From table 6.3, it’s clear that the one year estimation period shows best results in 
both number of breaks and correlation, with an average number of parameter breaks 
of 19.0 against the six month parameter of 19.8, and correlation 1.2% against the two 
year parameter with 4.6%.  
 
For Kupiec’s test in table 6.6, the one year parameter shows the lowest LRPOF, but has 
at the same time a low number of stocks that pass the test. The six month parameter 
has the second lowest average LRPOF , but the highest number of stocks that pass the 
test. Therefore it is rewarded as the best estimation period for this test. The 
equivocation of these results is a feature of this particular segment, containing a 
great variety of different stock markets and thus skewed distribution of the results. 
 
The Basel test also proves that the six month parameter is the best, with the highest 
number of stocks in the green category. As for Christophersen’s test, the three year 
parameter shows the second best result in number of stocks that pass the test in 
table 6.13, but contradictive the highest average LRind. The one and two year 
parameters both come in third place, with the same amount of stocks that pass the 
test.  
 
Mid Cap 

Parameter  0,5 1 2 3 

Breaks 2 1 4 3 

Correlation 4 1 2 3 

Kupiec 1 3 4 2 
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Basel 1 2 4 3 

Christophersson 1 3 3 2 

Conclusion 1 2 4 3 

     
 

Table 7.2: Overall results for Small cap, labeled in a scale from 1-4, where one represents the estimation 

period resulting relatively best in the group  

 
Results from the Mid Cap segment presented in table 7.2, are ambiguous and makes 
it difficult to draw conclusions. The results of the six month and the one year 
parameter are close. But still, the six month parameter shows best result in total and 
therefore is considered as number one overall. 
 

7.3 Large Cap 
The one year parameter shows the best results in terms of parameter breaks, with an 
average of 21.8 in table 6.4. The six month parameter has a correlation of -2.4% and 
is closest to zero.  
 
Due to the statistical results, the one and two year estimation periods shows the best 
results. For Kupiec’s and Basel test, the one year parameter shows best results while 
Christophersen’s test holds the six month parameter as number one (see tables 6.7, 
6.11 and 6.14). 
 
Large Cap 

Parameter 0,5 1 2 3 

Breaks 2 1 3 4 

Correlation 1 2 3 4 

Kupiec 2 1 4 3 

Basel 2 1 3 3 

Christophersen 1 2 3 4 

Conclusion 2 1 3 4 

     
 

Table 7.3: Overall results for Small cap, labeled in a scale from 1-4, there one represents the estimation 

period resulting relatively best in the group  

 
As stated in table 7.3, the one and two year parameters show the best results 
throughout the whole investigation for Large Cap. After summarizing the results, the 
conclusion is that the one year parameter shows best results in total and the six 
month parameter the second best. The three year parameter shows unambiguous 
results for being the third best, which omits the two year parameter to the fourth 
place. 
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8 Conclusion 
In the empirical part of our investigation, we summarized the number of parameter 
breaks that occurred over a six years period. If our investigation had ended here, we 
could just conclude that the parameter with the number of exceptions closest to the 
theoretical expected number is the most accurate one. This however is not the case. 
An accurate parameter, as discussed in previous chapters, involves two dimensions;  

 Unconditional coverage: In a good VaR model the number of exceptions 
should be in line with the selected confidence level (Jorion, 2001) 

 Conditional coverage: A good VaR model should not only produce the correct 
number of exceptions but also produce exceptions that are uniformly spread 
in time, i.e. independent and identically distributed. (Jorion, 2001) 

In other words, to give a definitive answer, consideration must be taken to the both 
above dimensions. 

To make a conclusion generalized for the whole stock market, we summarized the 
results from all three stock segments; Small Cap, Mid Cap and Large Cap. By doing 
so, we also incorporate the data quality and the number of stocks engaged in each 
segment for this study.  

The quality of the data, as discussed earlier is a problem. The quality of data for 
stocks in Small and Mid Cap has after investigation poorer quality than stocks in 
Large Cap, i.e. stocks are not as frequently traded as the stocks in Large Cap. Their 
history is generally also shorter than stocks in Large Cap. To qualify in our study, all 
stocks must have a minimum of nine years of history. This criterion disqualifies a large 
number of stocks, especially in Small Cap but also in Mid Cap and has consequently 
left us with almost as many stocks of Large Cap as Small and Mid Cap together. The 
both features of different data qualities and different number of stocks in the 
segments makes it necessary to consider particularly the outcome from Large Cap to 
make generalize conclusions of the whole stock market. The table below shows the 
relative overall performance of the three stock segments for all tests, in addition with 
its amount of stocks and lack of trading days.  
 

Summary 

Parameter 0,5 1 2 3 Stocks No trades 

Small Cap 4 2 1 3 46 8,58% 

Mid Cap 1 2 4 3 33 9,03% 

Large Cap 2 1 3 4 72 5,25% 

       
 

Table 8.1: A summary of the total result of the different tests, labeled by the segments 

 

To summarize the overall results, there is no definite “winner” of best estimation 
period, i.e. no parameter shows best results in every segment.  
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For the segments with the fewest stocks and lowest accuracy due to data quality, i.e. 
for Small Cap and Mid Cap, the six month and two year parameter has each a 1 and a 
4, i.e. an average of 2.5. The one year parameter has two 2s, and the three year 
parameter two 3s. Thus, the best parameter for these segments would be the one 
year parameter, second best the six months and the two year parameter and the 
three year parameter as the least accurate. 
 
Summary 

Parameter 0,5 1 2 3 Stocks No trades 

Small Cap 4 2 1 3 46 8,58% 

Mid Cap 1 2 4 3 33 9,03% 

Summation 2 1 2 3 77 

 

       Large Cap 2 1 3 4 72 5,25% 

       
 

Table 8.2: A summary of the total result of the different tests, labeled by the segments 

 
The results from Large Cap indicate similar assumptions as for the other segments. 
The best performed parameter is the one year estimation period, second best the six 
month, third best the two year parameter, and the three year parameter as worst.  
Due to the numerical results we can therefore conclude that the parameter that 
overall makes the tests best i.e. take cover for both dimensions of unconditional and 
conditional coverage and that also performs best in Large Cap is the one year 
parameter. Second best would be the six month, and third best the two year 
parameter.  
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9 Discussion and suggestion to further studies 
The overall results have shown that the one year parameter gives the best results in 
total. What should be noticed is that there is a diffuse pattern over the results 
between the different stock segments. No segment shows exactly the same results 
one to another and should in some sense thus be regarded apart from each other. If 
there would be a possibility and resources to expand the parameter framework we 
therefore recommend not to generalize one optimal estimation period but instead 
treat the segments separately.  
 
As what have been mentioned before, the data quality is a general issue when 
dealing with historical data. In our study it has limited us to both the number of 
stocks and to the length of historical data, which has unfortunately resulted in uneven 
numbers of stocks in the different segments. As a consequence the comparison 
between the segments is doubtful. A solution to this problem could be to choose 
equal numbers of stocks in each segment. However, this would had left us with less 
number of stocks and hence make general conclusion less valid. Since our objective 
was to make generalized conclusions of the whole stock market we chose not to 
involve fewer stocks in our study. 
 
One strong assumption when estimating VaR with the historical simulation method is 
that the daily price changes is independent and equally distributed. This assumption 
should however be carefully handled and can be seen as an explanation to why the 
model is not completely accurate. In reality, the volatility in price changes is strongly 
dependent of the financial environment and hence varies from different time periods. 
As what have been observed from the previous financial crises, the declines in asset 
values have not just been very large but also appeared close to each other. This fact 
makes it obvious that price changes is not independent and neither identical 
distributed and thus by the theory not makeable that the risk framework is not 
accurate. Therefore it makes it unrealistic to use this risk methodology to take cover 
for future risks in an unstable financial environment. Another doubtful feature with 
the historical simulation method in financial crises is that the data used in estimating 
the VaR parameter can never show larger losses than previous historical events and 
thus unable to predict eventual losses larger than earlier appeared.   
 
Due to the statistical investigation of our study, the different backtesting approaches 
of VaR is hampered by different kinds of shortcomings. Kuipecs POF test gives a 
good overview if the number of exceptions is in line with the theoretical expected 
number of exceptions. On the other hand, the test lacks the ability to examine when 
in time the exceptions occur. It also does not capture the magnitude of the 
exceptions. It is therefore of great importance that this test is followed up by other 
tests that examines when in time the exceptions occur i.e. conditional coverage. The 
Basel Committee’s test is built upon the same statistical framework as the POF test 
and therefore contains the same kinds of shortcomings.  
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These two tests give a good first overview of the number of exceptions that are line 
with the theoretical number, but lack the ability to alone draw conclusions of the 
models accuracy. As a complement we used Christoffersens interval forecast test that 
takes conditional coverage into account. The test examines the likelihood that two 
exceptions follow each other. The choice of confidence level also incurs different kind 
of problems and should be selected with regard to backtesting. For small values of p 
such as 0.01, it becomes increasingly difficult to confirm deviations and to conclude if 
the model overestimates risk. A lower VaR confidence level is therefore from a 
backtesting perspective more appropriate in order to observe sufficient number of 
deviations to validate the model.  
 
Our own reflection and critique about the Historical Simulation method is mainly due 
to the fact, that the method does not take into account that historical data used is 
less accurate the further back in time you go, due to the daily financial environment. 
Our belief is that the closer the historical period is to today, the more accurate the 
estimation is due to future predictions. But as mentioned, to approximate an accurate 
estimation large amount of data is necessary. Therefore our suggestion to further 
studies is to construct a weighted historical simulation method to estimate VaR. One 
idea is to give more weight to recent data and at the same time a lower weight to 
older data.  
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APPENDIX 1 - Critical values for the chi square 
distribution 
 

 

 
  P Value                       

f 0.995     0.99 0.975 0.95 0.9 0.75  0.5 0.25 0.1 0.05 0.025 0.01 0.05 

1 0.00 0.00  0.00 0.00 0.02 0.1 

 

0.45 1.32 2.71 3.84 5.02 6.63 7.88 

2 0.01 0.02 0.05 0.1 0.21 0.58 1.39 2.77 4.61 5.99 7.38 9.21 10.60 

3 0.07 0.11 0.22 0.35 0.58 1.21 2.37 4.11 6.25 7.81 9.35 11.34 12.84 

4 0.21 0.30 0.48 0.71 1.06 1.92 3.36 5.39 7.78 9.49 11.14 13.28 14.86 

5 0.41 0.55 0.83 1.15 1.61 2.67 4.35 6.63 9.24 11.07 12.83 15.09 16.75 

  

            

  

6 0.68 0.87 1.24 1.64 2.20 3.45 5.35 7.84 10.64 12.59 14.45 16.81 18.55 

7 0.99  1.24  1.69  2.17  2.83  4.25  6.35  9.04  12.02  14.07  16.01  18.48  20.28 

8 1.34  1.65  2.18  2.73  3.49  5.07  7.34  10.22  13.36  15.51  17.53  20.09  21.95 

9 1.73  2.09  2.70  3.33  4.17  5.90  8.34  11.39  14.68  16.92  19.02  21.67  23.59 

10 2.16  2.56  3.25  3.94  4.87  6.74  9.34  12.55  15.99  18.31  20.48  23.21  25.19 


